PHYSICAL REVIEW E

VOLUME 50, NUMBER 5

New Fréedericksz thresholds in three dimensions

Axel Kilian*
Institut fir Theoretische Physik, Technische Universitat Berlin, Hardenbergstrasse 36,
D-12046 Berlin, Germany
(Received 12 November 1993; revised manuscript received 4 May 1994)

This work was inspired by a paper of Lonberg and Meyer [Phys. Rev. Lett. 55, 718 (1985)], who ob-
served a Fréedericksz threshold different from the usual one, Ug.q =7V K, /Ag, which results from a
one-dimensional (1D) stability analysis and which underlies measurement techniques of the Frank elastic
constant K,. The new threshold occurs in polymer constituent nematic liquid crystals, which possess,
compared to the usual low-molecular-weight nematic mixtures, an unusually large ratio of K, /K,. Itis
accompanied by a periodic splay-twist distortion parallel to the director field. The stability estimations
given by Lonberg and Meyer were later confirmed by Cohen and Luskin [in Nematics: Mathematical
and Physical Aspects, Vol. 332 of NATO Advanced Study Institute, Series C: Mathematical and Physical
Sciences, edited by J. F. Coron, F. Helein, and J. M. Ghidaglia (Kluwer, Dordrecht, 1991), p. 261], who
used a new variation method to determine “weak stability.” Due to the fundamental role of Fréedericksz
transitions not only in measurement techniques, but also in the operation of many electro-optical de-
vices, I found that the problem of stability in 3D deserves systematic investigation. Since there is not
much hope of obtaining analytical solutions of the respective Euler-Lagrange equations in 3D, I pro-
grammed a scheme that simulates the measurement process of elastic constants at different geometries.
As a result, I could first reconfirm the known effect, and second, predict a new instability mode that
should occur in nematic liquid crystals with a negative dielectric anisotropy subjected to homeotropic
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anchoring. Analytical expressions for the 3D threshold values support the numerical results.

PACS number(s): 64.70.Md, 02.70.Bf

I. INTRODUCTION

There are a variety of second-order phase
transitions—so-called Fréedericksz effects—which ac-
company the operation of virtually all electro-optical de-
vices that use nematic liquid crystals; those effects are
also very useful, if not necessary, for the measurement of
the elastic constants. So far, the one-dimensional (1D)
calculations on which the stability analyses are based
agreed perfectly in general with experiment. For a sum-
mary of the various geometries and the respective thresh-
old values, see the Appendix.

However, there is one exception, discovered by Meyer
in 1985: When he examined a new high-molecular-weight
nematic, he found a periodic splay-twist distortion that
appeared at the Fréedericksz threshold instead of the
usual pure splay. This “new ground state” occurred at a
lower field strength than predicted by Eq. (19). The key
feature of the new material was an unusually high ratio of
K, /K, as a consequence of the length-to-width-ratio of
the molecules, which was of the order of 70.

The new effect can qualitatively be understood as fol-
lows: Since the splay instability is degenerate (like any bi-
furcation), it can tilt in one direction at one point, and in
the other direction at another point. In between, a twist
distortion is generated (see Fig. 1). If the twist elastic
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constant, K, is small enough, this mode is energetically
preferred to the usual instability mode, because it avoids
splay.

For a quantitative understanding, a pair of two-
dimensional (2D) equations (Euler-Lagrange equations of
the Frank energy) would have to be solved, which the au-

FIG. 1. Periodic bend-splay distortion that occurs for large
ratios of K, /K.
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thors of [1,2] could only do numerically. Second they
found, first that the periodic bend-splay distortion should
occur whenever K,/K,>3.3 (this number is actually
very close to the exact analytical value found by Oldano
[3]). Second, they found that the in-plane wave vector of
the distortion should somehow increase close to the criti-
cal ratio. The latter could not be confirmed in experi-
ment.

II. BASIC EQUATIONS
AND THE NUMERICAL ALGORITHM

The anisotropic part of the free energy of a nematic
subjected to a prescribed electric field is

f=fe] +fchiral +fﬁeld ’ (1)

where

K, K, ., K3 2
fe,=—2—(divn)2+7(n-VXn) +-—2—(n><rotn) , (2

Seta= A:,'E(n-lz)2 , 3)
and

27TK2
f chiral — n-rotn ; 4)

Do is the intrinsic cholesteric pitch. In Eq. (3), a
prescribed field is assumed. Usually a nematic cell, how-
ever, operates with a prescribed voltage, and the field de-
pends on the director configuration. For 1D, Deuling has
found an analytic solution [4]. Since in this paper only
very small distortions of a constant director field are con-
sidered, the difference between prescribed field and
prescribed voltage is negligible.
For numerical purposes, the equivalent form [5]

K , K
———(Vana) +—2—(Van,g)(VanB)

+————nanB(Vany)(V,gny) (5

is more suitable and differs from Eq. (2) only by a surface
term. In order to simulate a measurement process of an
elastic constant, a dynamic equation is necessary. It is
deduced from Eq. (5) by variational derivative, i.e.,

g+kn

n=a
én

) (6)

where a is a proportionality factor and An stems from the
variation of the constraint n My =1, A being the
Lagrange multiplier. By comparison with a dynamic
equation for the alignment tensor which was formulated
by Hess in 1975 [6], it is found that
a=—-1, )
Y1

v, being the rotational viscosity. Inserting Eqgs. (1) and
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(7) in Eq. (6) yields the explicit form
yiig=(K,—K g —K,g? +(K,—K4)g®
+g¥+ 4Ky gff’ , @)
Po
where
gy =V, Vg, )
g =VgVsn, , (10)
g =(Vong—Vpnn, V. ng—Vpngn v.n,
—Vgn, VgV, n, , (11)
g¥ =AcEn, (12)
and
8o =€ap,Vphty - 13)

The Lagrange multiplier term in Eq. (6) is omitted, and,
instead, the new director at each grid point is divided by
its length. This equivalent procedure is less complicated,
and numerically more stable. The field term in Eq. (12)
has been specialized to an electric field pointing in the z
direction, and g, in Eq. (13) is the total antisymmetric
isotropic tensor of rank 3. Upon discretizing Eq. (8) on a
rectangular mesh using the wusual (finite-difference
methods, a numerical algorithm is obtained which simu-
lates the relaxation of a nematic confined to a rectangular
box. A more detailed example of this procedure can be
found in [7]. The director field at the boundary is
prescribed (rigid anchoring). The maximum numerically
stable time step has been chosen; it depends on the ma-
terial coefficients, and on the field strength. The order of
magnitude was

0.01< <0.15. (14)

Finally, it is important to apply small “fluctuations” to

U: Applied Voltage

C: Capacitance ~ < nf>

\

Simulation program

Control Circuit
yields U (C, C)
yields n(t+1) from n(t)

parameters: Ky, Ky, K3, po, € E?

/7777

FIG. 2. Programming scheme to simulate the measurement
of elastic constants for different geometries in 3D.
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FIG. 3. Dynamics of the automatic *‘threshold finder.”

the director field, so that any distortion mode can be
found. This has been done by adding Gauss distributed
random numbers to the director components. The expec-
tation value is typically of the order 10~ > or smaller.
Due to the Gaussian distribution function, the perturba-
tion is isotropic. It should be mentioned that these per-
turbations are different from the real thermal fluctua-
tions; they help, however, like the real thermal fluctua-
tions, to avoid metastable director configurations.

In principle, the simulated measurement of the
Fréedericksz thresholds could be done with this program
“manually,” that is, one could try and search for the
value of the field strength at which the mean value {n,)
(in equilibrium) matches a small prescribed number, typ-
ically of the order of 1073, This, however, turned out to
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Field
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-7
t/[1000 8 2 1O
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splay-twist
threshold
pure splay
threshold

be impracticable due to the critical slowing down near
the threshold. Actually, in real life it can take a whole
day to determine a Fréedericksz threshold. In order to
speed up the procedure, I wrote a program that adjusts
the field strength during the relaxation, that is, in non-
equilibrium. It will be described in some detail below, be-
cause it might also be useful in real experiments (see Fig.
2). The basic algorithm is
EneW:E87“F'i‘pgoal/Tl—%(p/‘—Z' . ‘15>
Here, @ denotes (n,) (proportional to the anisotropic
part of the capacitance), and 7, and 7, are numbers typi-
cally of the order & and i, respectively. In order to

50
avoid an increasing oscillation, it is necessary to take the
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FIG. 4. Operation of the threshold finder for a nematic with a splay-twist ratio K, /K, =5.
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time derivative of @ into account, with much more em-
phasis than on ¢ itself. In Fig. 3, a simulated relaxation
based on Eq. (15) is depicted. It corresponds to a 2D
simulation area of 99X9 grid points and Fréedericksz
geometry. The 1D threshold was found in less than 2500
time steps. For a cell of 10 um filled with MBBA, this
would correspond to 17 s [cf. Eq. (14)], at room tempera-
ture, when K,=4X10"'2 N and 7,=0.77 Pas. The ac-
curacy obtained was better than 0.6%, which is very
good for a cell with only 9 grid points in diameter. Ran-
dom perturbations of magnitude 5X 10~3 were applied.

III. FREEDERICKSZ GEOMETRY

This chapter is a review of Meyer’s periodic splay-twist
distortion, as described in the Introduction. It serves
mainly as a test of the program.

For the simulations presented in this chapter, free
boundary conditions have been used. That means that
the lateral boundaries (but not the top and bottom layers)
exert no constraints on the director field. Mathematical-
ly, this corresponds to the condition that the gradient of
the director field in the direction of the boundary layer

A
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FIG. 5. Spatial distribution of the elastic
energies for the splay-twist distortion occur-
ring at a ratio K, /K, =5.

normal vanishes. In the program, this has been accom-
plished by setting a directors in the boundary layers equal
to its nearest neighbors in the bulk.

I would like to begin with an example, and proceed
then more systematically. The example is a nematic with
a splay-twist ratio K; /K, =S5. In Fig. 4, the dynamics of
the approach toward the threshold is shown. Actually,
two thresholds are approached: first, the usual 1D
threshold, and, later, another threshold, which is lower.

The whole process takes 24 000 time steps, which cor-
responds to almost 3 min even for a cell of only 10 um
filled with MBBA. The usual 1D threshold is found in a
few seconds. Then, for a minute, nothing seems to hap-
pen. Suddenly, the ‘“capacitance” (n?) jumps to a
higher value, which is immediately compensated by de-
creasing the applied voltage. A new equilibrium is ap-
proached for the decreased voltage. In the present case,
the lower three-dimensional (3D) threshold differs from
the 1D threshold only by 5%. As can be seen in Fig. 4(c),
a twist distortion which evolves very slowly is the reason
for that unusual behavior.

The spatial distribution of the elastic energies is depict-
ed in Fig. 5. The in-plane distance between two neigh-
boring twist regimes is here of the order of the cell thick-
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FIG. 6. (a) Dependence of the inverse stripe distance (in-plane wave vector) on K, /K,. For large values of K, /K, the stripe dis-
tance approaches a value close to the cell thickness, whereas there is a minimum value R, for K, /K,, where the stripe distance
diverges. (b) Dependence of the threshold on K, /K,. The small deviation of the 1D threshold from unity is due to a discretization
error of 0.7%, which is very small for a cell with only 7 grid points in diameter.
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ness.

Next, the dependence of the threshold on K, /K, and
on the stripe distance is investigated. This is done by a
loop over K| /K, from 1 to 20. In Fig. 6(a), the in-plane
wave vector, and in Fig. 6(b), E ; .hoia /E 1p are plotted
both as a function of K, /K ,.

The data for the latter plot were obtained by a discrete
Fourier transform of the director field, and subsequent
smoothing with spline functions of the order of 9. As a
consequence of this complicated procedure, this part of
the simulation might be less accurate than the rest. Nev-
ertheless, the Figure indicates correctly that the in-plane
wave vector becomes zero (the stripe distance diverges)
somewhere around 3.3.

According to Fig. 6(b), the critical ratio of K, /K,
seems to be somewhere between 3.5 and 4, whereas the
correct value should be ~3.300. This small deviation
has the following origin: Since the splay-twist instability
mode as a function of K,/K, exhibits a second-order
phase transition, there is a critical slowing down. As a
consequence, the data which are close to the critical ratio
are less accurate than the rest, because they are not quite
in equilibrium (all data were obtained by applying a fixed
number of 400 000 time steps to the liquid crystal). In the
simulations, no splay-twist distortion arose below a value
of K, /K,=3.7, probably due to both the limited simula-
tion area and the limited time. In order to come closer to
the diverging point, a larger simulation area and more
time steps would have been needed. For the present pur-
pose, which is mainly a test of the program, this did not
appear to be necessary.

IV. HOMEOTROPIC GEOMETRY

This chapter contains in its first part the result that an
anticipated effect does not exist. The second part
presents, as a prediction, a new instability mode which
should occur for nematics with a negative dielectric an-
isotropy and a ratio of K, /K, which is above a certain
threshold value.

A. Free boundary conditions

The main result for this setup is that there is no
difference between 1D and 3D, that is, the usual thresh-
old as given by Eq. (20) is found (again, with a small
discretization error of 0.6%). I tried ratios K; /K, up to
100, at which value the program collapsed due to numeri-
cal instabilities.

At first glance, this is surprising because one would ex-
pect an effect analogous to the one described in Sec. III
(i.e., pure bend would be released by a periodic bend-twist
structure). This simply did not happen in my simula-
tions. By exerting an artificial constraint on the director
field I checked that the cause was not the additional de-
gree of freedom occurring in the homeotropic geometry.
Looking at the problem more closely, I found that the
differential equations are quite dissimilar, although they
lead to equivalent distortion modes and Fréedericksz
thresholds. Actually, even the Euler-Lagrange equations
in 1D are quite different (cf. [8] and [9]).
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B. Rigid anchoring

Here, a rectangular box, and also a spherocylinder,
both with fixed boundary conditions at all boundary lay-
ers, are examined. Actually, the shape is not as impor-
tant as the fact that now the director field at the lateral
boundary is fixed. Although this case is analytically
easier to handle, there is no one-to-one mapping to an ex-
perimental situation. Physical situations which approxi-
mately meet this model are (1) a single pixel embedded in
a homeotropic environment and (2) laser-induced
Fréedericksz transitions, where also only a very small re-
gion of the sample is addressed by a laser beam.

Simulating this setup, I found that for ratios of K, /K,
above a certain threshold value, a new type of distortion
mode occurs, which comes along with a lower threshold.
This chapter proceeds as follows: After introducing the
new effect by a specific example, the two different insta-
bility modes will be examined more quantitatively.

In Fig. 7, the equilibrium director fields obtained with
the threshold finder for two different values of K, /K, are
depicted. Since the threshold finder yields director fields
with very small distortions, the x and y components of
the director field have been amplified by a factor of 10.

The left configuration belongs to a ratio of K| /K, =1.
As can be seen, the director field is just tilted. If the la-
teral edges are of equal length, or if K| =K, the director
can tilt in any direction. In contrast to the 1D instability
mode, this distortion is not a pure bend, but contains also
splay (here at the top and bottom of the Figure) and twist
(here at the left and right sides of the Figure). Another
effect of the finite lateral size of the box is an increase of
the Fréedericksz threshold, compared to the 1D thresh-
old given by Eq. (20). Both simulation areas consisted of
only 7X7X7 grid points, which is a resolution too low
for quantitative results, but good enough to demonstrate
the effect in principle.

From semianalytical calculations to be presented in
Secs. 2 and 3 of the Appendix analytical expressions have
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FIG. 7. Top view of the director fields slightly above the
threshold (only the center layer is depicted). The small distor-
tion has been amplified by a factor of 10. (a) At K, /K, =1, the
director field exhibits the usual bend-twist-splay instability
mode (BTS), that is, it may tilt in one (arbitrary) direction. (b)
At K, /K, =17, the director field is rotationally symmetric, and
any radius vector coincides with a twist axis, so that a double-
twist distortion (DT) occurs.
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FIG. 8. (a) Dependence of the Fréedericksz threshold on K,/K,. Above a critical value of K;/K,~5, the threshold should
theoretically stay constant. (b) The elastic energies in an equilibrium state slightly above the Fréedericksz threshold as a function of
K,/K,. When the director field transforms from the BTS to the DT configuration, splay is replaced by twist energy.

been obtained for the Fréedericksz thresholds at which
the above distortions occur. They are

172
Ki+(K,+K,)D 2
EES=T , 16
crit d IAE[ ( )
where a nematic confined to the rectangular box

[—w/2,w/2]X[—w/2,w/2]X[—d/2,d /2],

is assumed and @ is the (dimensionless) lateral size in
units of the cell gap d. When  is large, the 1D thresh-
old, Eq. (20), is approach.

The double-twist threshold

2K3

|Ae]

By
R

T

EDT_.. v
d

crit

} (17)

is based on the assumption that the nematic is confined to
a spherocylinder of height d and radius R; B;~3.831 is
the first zero of the Bessel function J,(x).

Since EBIS depends on K, whereas EDT does not,
there is a crossover at a critical ratio of K, /K,, above
which the double-twist instability mode is energetically
preferred. This value is found to be

K$ ~4.95 .

2 K, 1/2
Ae|

(18)

Again, it has been assumed that the cavity shape is of
minor influence, so that w=2R. Since Eq. (18) is based
on some approximations, it is compared to numerical
solutions. Some quantitative numerical results are
displayed below.

Figure 8(a) shows that the critical ratio of K, /K, ~5 is
well reproduced. For K,/K,=1, Eq. (16) matches the

numerically obtained threshold well. In particular, for
only 7X7X7 grid points, E .. /E,,=0.988. For
K,/K,=4, E, ./E,,=0.96, although the simulation
area was 19X 19X 19 grid points. This deviation reflects
that Eq. (16) is strictly valid only if K| =K,, but indicates
at the same time that it is a good approximation.

Comparing the double twist (DT) threshold to Eq. (17),
one sees immediately that the numerically obtained
threshold as a function of K; is not constant; it has a
small but finite slope. The accuracy was still better than
3% for the largest simulation area (31X31X11 grid
points, corresponding to d /R =%).

In Fig. 8(b), the assumption that the double-twist insta-
bility mode has no splay at all (this assumption is used in
the stability analysis presented in Sec. 3 of the Appendix)
is nicely confirmed. The quasidiscontinuity indicates that
the instability mode as a function of the control parame-
ter K, /K, undergoes a first-order phase transition.

V. CHOLESTERICS

The same double-twist instability as described in Sec.
IV B 4.2 can also occur in chiral nematics. It exists, how-
ever, only for low chirality (the chirality inhibits the
double-twist instability mode). Low chirality means here
that the pitch should be as long as necessary to reduce
the critical field, compared to an untwisted nematic, by
not more than 10-20 % [cf. Eq. (20)].

As already mentioned at the beginning of Sec. IV B,
the mathematical construct of rigid anchoring at the la-
teral boundaries is not canonically relatable to a physical
device or setup. In order to overcome this potential
drawback and to be more realistic, I simulated a pixel. A
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pixel (picture element) is the smallest part of a display
that can be addressed. The setup of a chiral nematic with
a negative dielectric anisotropy subjected to homeotropic
anchoring has been used in a dichroic display, which re-
quires no polarizers [10]. This time I did not use the
“threshold finder” described above, but used a constant
field 10% above the Freedericksz threshold. The field
was applied only in a center region. In that way, the rim
region serves as the homeotropic environment of the pix-
el. The specific parameters were K, /K,=7, K;/K,=1,
and p, such that the intrinsic rotation per lattice unit was
0.07 rad. The simulation area was 51X11X11 grid
points, which corresponds to a small pixel of 0.1X0.1
mm, if the cell gap is 20 um.

As a result, I could switch the cell within the rotation-
ally symmetric DT mode between a weakly tilted off state
and a strongly tilted on state. In order to achieve reason-
able switching times, a small holding voltage is needed
which preserves the small DT instability. The rotational-
ly symmetric director field might be interesting for appli-
cations which require a wide viewing angle. Since no fun-
damentaly new features arose in this simulation, I simply
report that the DT instability mode should also occur in
cholesterics.

VI. CONCLUSIONS

A known 3D effect has been reconfirmed, which may
be considered a test of the program. A systematic inves-
tigation of various geometries indicates the following.

(1) An equivalent to the periodic splay-bend instability,
namely, a periodic bend-twist instability does not occur in
nematics with negative dielectric anisotropy and perpen-
dicular anchoring, as might be expected.

(2) Instead, a rotationally symmetric instability mode
of the director field is energetically preferred when the ra-
tio of K, /K, exceeds a critical value of ~5. This numer-
ically obtained result is confirmed by linear stability anal-
yses.

(3) The same effect can also occur in cholesterics with
weak chirality. As a possible application, the operation
of an existing device [10] would considerably be altered
and, very likely, improved. For this, new material with a
sufficiently high ratio of K, /K, and, at the same time, a
reasonably low rotational viscosity 7, will have to be syn-
thesized.
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APPENDIX

1. Review: 1D Fréedericksz thresholds

Fréedericks transitions can occur when an electric or a
magnetic field is applied which is perpendicular to the
director field. If the anchoring at the top is parallel to
that at the bottom, the respective distortion modes are
pure bend, twist, or splay distortions. In any other case,

AXEL KILIAN 50

mixed types occur. The various geometries and the
respective distortion modes are depicted in Fig. 9.

The corresponding critical fields for all of the depicted
geometries are covered by three formulas.

(1) Planar anchoring at the surfaces, which may be
twisted by an angle B, and a positive dielectric anisotro-

py:
112
K,—2K, |B 4dK
ERr=E, |1+ ——"—2 =L | + Pr
{ K, ™ poKym
where
{ 1/2
K )
T 1
Ey=— , (Al
O d | gAe )

d is the cell diameter, and p, the intrinsic pitch of a
chiral nematic. This formula was first published by
Berreman [8].

(2) Perpendicular anchoring at the surfaces, and a neg-
ative dielectric anisotropy:

_K3
€0AE

2K, 2] ]
poK; |

er __ T
E%*g{

as was found by Greubel [9].
(3) The threshold for the “twist”” geometry in Fig. 9 is
given by

Schadt-Helfrich
geometry:

Twist Ae >0
geometry: splay, twist, bend

Homeotropic Ax >0
P geometry: twist
Freedericksz
Ae <0
geometry: bend
Ae >0
splay

FIG. 9. Distortion modes of some geometries which exhibit
Fréedericksz transitions. The double arrow indicates the direc-
tion of the applied field.
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172
K,

Ay

All results employ the assumption that the director field
is homogeneous in the planes parallel to the walls.

twist — T

thr d (A3)

2. Derivation of the 3D Fréedericksz threshold
for the bend-twist-splay instability

The instability mode on which the following analytical
calculation is based was obtained by inspection of the
simulated director field. It is found that for K, =K, the
director field of a nematic confined to the rectangular box
is very well fitted by

cosd cosg
n= |cosdsing | , (A4)
sind
with
Hx,y,z)=a cosZ—xcosZ—fcos—d— and ¢=const . (AS)

Consequently, we have homeotropic anchoring at the
boundaries; a is a small number. As there is no approxi-
mation that is at the same time more precise and still sim-
ple enough, this distortion mode is also used for K ;#K,.
The resulting error has already been discussed in Sec.
IV B. The region of the rectangular box is

4 4
272

Apox = . (A6)

d; d,
272

ii
2’

With this ansatz, the energy density, Eq. (2), plus Eq. (3)
is specified. Since only small distortions of the constant
off-field equilibrium state are considered, a Taylor expan-
sion with respect to a is appropriate:

fTaylor=fT:l¥(1’or +f;l';l)gltor +f’sl;:11§l;)r _+_fTaleor , (A7)
where
J
Kyymid.d
88F _(d,d d)AeE2+%+ (K1 +Kp)
a

Now, @ has to be determined such as to minimize the en-
ergy. This is done by

(1) =0 if (K, >K,, and d, >d,)

or (K, <K,, and d,<d,)
(2) p=m/2 if (K|, <K, and d,>d,)

or (K;>K,, and d,<d,)

(3) @ arbitrary in all other cases.
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cosp cos 2 cos T2 sin X
Taylor — a’r*K 1 dy d d,
bend 2 dx
ax wz . . wy |?
cos——Ccos—,-sing sin——
d, d d,
+ ,
d,
(A8)
cos@ cos =X cos T2 sin 7L
fToyor — a’m’K,, d, d d,
twist 2 dy
cosﬂcosﬂ-—zsin sin > i
d, *a ey
d,
, (A9)
2
cosﬁcosﬂsinE
Taglor _ & 2r’K 133 d, d, d
f splay — ) d ’ (A10)
and
a2cos = cos ™ sin T= :
Taylor — A€E2 dx dy d -1
field 2 d
(A11)

Here, —AeE?/2 is the free energy density of the undis-
torted homeotropic state. The remainder in Eq. (29) is
the difference between the distorted and the undistorted
state. Integration yields the total energy difference be-
tween the distorted and the undistorted state:

— Tayl Taylor
AF=[ o+

2
+—Aszidx dydz ,

Taylor Taylor
splay field

(A12)

which is explicitly

— K, (d}—d?)[(cosp)*—(sing)?]

4 4 ld—+— K
d, d, d.d,
(A13)
[
Accordingly, Eq. (31) becomes either
(1) d d
BAFD _d,da B2+~ uT e
a x
K,md.d Kymd,d
+ 22 x + 33 x%y (A14)
d, d

or
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2) K, md.d
M=dxdydAaE2+“—
a? d,
K,md,d Kiym'd. d
”d 2t ”d . (A15)

X

Depending on the field strength E, a small distortion of
the homeotropic state can either increase or decrease the
total energy. The critical field is determined by Fé!t2=0.
The two solutions are

g | LK, Ko K5 |
crit |A8| dxz dyz d2 )

(A16)
E(Z)_’IT 1 Kl K2 &

crit

ettt
|A8|{dy2 d?  d?

Jl/z
and Eq. (16) follows immediately.

Remember that Eq. (34) is only an approximation if
K,#K,. By comparison with numerically obtained
threshold values, a deviation of 7% was found when
K,/K,=5. Nevertheless, this calculation provides a
qualitative understanding of the new 3D effect.

3. Derivation of the 3D Fréedericksz threshold
for the double-twist instability

Since the distortion mode to be considered here, the
DT distortion, is spherically symmetric, I assumed a
nematic confined to a spherocylinder with radius R and
height d. One appropriate ansatz is

sin( —g)sin[av(r)u(z)]
n= |cos(—@)sin[av(r)u(z)]
cos[av(r)u(z)]

(A17)

Again, a is a small number. With v (0)=v(R)=0 and
u(0)=u(d)=0, this ansatz describes a director field
which looks like that in Fig. 7(b). Following the same
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procedure as in Sec. 2 of this appendix, one obtains the
Taylor expansion of the free energy density:

Kpul(z)

r2

2fTvlor=AgE2+4? ¥ +r'(r)]?

+ K302 (ru'H(z)

+AeE*u(z)vi(r) (A18)

The corresponding Euler-Lagrange equation for v(r) is

2,2 Kyriu'¥z)
pir) |14 BEETT DT E —r'(r)
Ky K,u<(z) |
—r"(r)=0, (Al9)
and the Euler-Lagrange equation for u(z) is
K, | 2.2 2,02 , |
Pz — =2 |1+ AeE“r Ly +2rv'(r) w(z2)
K33 Kzz U(r)
=0. (A20)

I could not find a strict solution of this system. As an ap-
proximation, however, one can solve Eq. (37) at constant
z, and Eq. (38) at constant r. This yields

{ (

bor

R

mZ

vir)=J, p

and u(z)=sin

J

(A21)

Here and below, J, are the Bessel functions of nth order,
and b, is the first zero of J,. Fortunately, this approxi-
mate solution is a good fit to the director field obtained
numerically by the “threshold finder.”

Inserting Eq. (39) into Eq. (35) into Eq. (36) yields the
energy difference (per volume) to the undistorted state:

A sin %z byr | bor | ¥ ‘:
A =k, - L1 4 g |29 | 2Ry, %J—borJz 0 ||
T bor ’ 2 | .| mz : ,
+K;; g]l R cos | —- +AeE” |J, |—— |sin i (A22)
The total energy difference is then
—2—1;:% J! [ rapdrdz=n K22Ad+M+AsE2BRZ : (A23)

where 4 =1.19082, B=0.0811076,and 4 /B =b(2,. At the critical field, AF =0 is required, which yields Eq. (17).
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FIG. 1. Periodic bend-splay distortion that occurs

ratios of K, /K,.



FIG. 5. Spatial distribution of the elastic
energies for the splay-twist distortion occur-
ring at a ratio K, /K, =5.
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FIG. 7. Top view of the director fields slightly above the
threshold (only the center layer is depicted). The small distor-
tion has been amplified by a factor of 10. (a) At K, /K, =1, the
director field exhibits the usual bend-twist-splay instability
mode (BTS), that is, it may tilt in one (arbitrary) direction. (b)
At K, /K,=1, the director field is rotationally symmetric, and
any radius vector coincides with a twist axis, so that a double-
twist distortion (DT) occurs.
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FIG. 9. Distortion modes of some geometries which exhibit
Fréedericksz transitions. The double arrow indicates the direc-
tion of the applied field.



